MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Decide whether the relation is a function.

- 1) {(-5, -2), (-1, 1), (3, -6), (8, 1)}
 - A) Function

B) Not a function

- 2) {(2, -9), (2, -2), (6, 8), (8, 1), (11, -7)}
 - A) Not a function

B) Function

- 3) {(-8, 2), (-8, 8), (-1, 6), (4, 7), (7, 5)}
 - A) Function

B) Not a function

Determine whether the relation is a function.

A) Function

B) Not a function

A) Function

B) Not a function

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Determine whether the relation is a function. Respond either "function" or "not a function". If it is not a function then state what is wrong in the relation that prevents it from being a function.

6)

X	ĮΥ ₁	
₽ 6	-3	
-3	01	
	2 3	
X= -6	1-	

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Determine whether the relation is a function.

7) 9 -10 -15 -17 13 -18

A) Function

B) Not a function

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Decide whether the relation is a function. If it is a function, respond "yes" and state the domain and range. If the relation is not a function, respond "no" then state the necessary restrictions on the domain and range to produce a function.

8)

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Decide whether the relation is a function, and give the domain and range.

9

A) Function; domain: [-2, 8]; range: [3, 5]

B) Not a function; domain: [-2, 8]; range: [3, 5]

10)

A) Not a function; domain: $(-\infty, \infty)$; range: $(-\infty, \infty)$

B) Function; domain: $(-\infty, \infty)$; range: $(-\infty, \infty)$

Determine whether the relation defines y as a function of x. Give the domain.

11)
$$2x = 10 - 6y$$

- A) Function; domain: all integers
- C) Not a function; domain: (-∞, ∞)

- B) Not a function; domain: all whole numbers
- D) Function; domain: (-∞, ∞)

- 12) $y^2 = 3x$
 - A) Not a function; domain: (-∞, 0]
 - C) Function; domain: (-∞, ∞)

- B) Not a function; domain: [0, ∞)
- D) Function; domain: (-∞, 0]

- 13) $y = \sqrt{6x 4}$
 - A) Function; domain: (-∞, ∞)
 - C) Not a function; domain: $\left[-\infty, \frac{2}{3}\right]$

- B) Not a function; domain: $\left[\frac{2}{3}, \infty\right]$
- D) Function; domain: $\left[\frac{2}{3}, \infty\right]$

- 14) 10x 4y < 7
 - A) Function; domain: $\left[-\infty, \frac{7}{4}\right]$
 - C) Function; domain: (-∞, ∞)

- B) Not a function; domain: (-∞, ∞)
- D) Not a function; domain: $\left(-\frac{7}{4}, \infty\right)$

Solve the problem.

- 15) Find f(1) when $f(x) = x^2 + 2x 6$
 - A) 5

B) -7

C) 9

D) -3

- 16) Find f(k-1) when $f(x) = 3x^2 + 3x + 7$
 - A) $3k^2 + 24k + 13$
- B) $-3k^2 + 3k + 7$
- C) $3k^2 3k + 7$
- D) $3k^2 3k + 13$

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

17) Find f(0) when $f(x) = x^2 - 2x - 4$

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

- 18) Find f(k) when $f(x) = 3x^2 + 4x + 5$
 - A) $9k^2 + 16k + 25$
- B) $3k^2 + 16k + 5$
- C) $3k^2 + 4k + 5$
- D) $3k^2 + 4k + 25$

- 19) Find g(a + 1) when g(x) = 3x + 1.
 - A) $\frac{1}{3}a + 1$
- B) 3a + 1

- C) 3a + 4
- D) 3a 1
- 20) It has been determined that the number of fish f(t) that can be caught in t minutes in a certain pond using a certain bait is f(t) = .21t + 1, for t > 10. Find the number of fish that can be caught if you fish for 27 minutes. Round your answer to the nearest whole number.
 - A) 31

B) 29

C) 14

D) 7

x items d	hematical model C(x luring a month. Base	c) = 500x + 100,000 repr ed on this, how many	esents the cost in dollars a cor items were produced if expen	npany has in manufacturing ses were \$250,000 in one
month? A) 500	items	B) 300 items	C) 200 items	D) 100 items
The graphing calcuproblem.	ılator screen or scre	ens provide informati	on related to the linear funct	ion $y = f(x)$. Use it to solve the
22) What is t	he y-intercept of the	e line?		

X	Y1	
0.00 1.00 2.00 8.00 4.00 5.00	7.00 10.00 13.00 16.00 19.00 22.00	
X=3		

A) 16

B) 3

C) 0

D) 7

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Provide an appropriate response.

23) The equation $y = x^2$ is satisfied by the points (2, 4) and (-2, 4). A horizontal line may be drawn between these two points. Is $y = x^2$ a function? Explain.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

24) If the ordered pair (4, 8) belongs to function g, then $g(\underline{}) = \underline{}$.

A) y; 4

B) x; 8

C) 4· 8

D) 8; 4

25) If the ordered pair (5, 9) belongs to function g, then $g(\underline{\hspace{1cm}}) = \underline{\hspace{1cm}}$.

A) x; 9

B) 9; 5

C) 5: 9

D) y; 5